

POTENTIAL HEALTH CONCERNS AT FRAC SAND MINES

Minnesota Erosion Control Association Conference March 12, 2015 Ginny Yingling, Minnesota Dept. of Health

Topics To Be Covered

Frac Sand in Minnesota

• What is it?

Why is it here? How is it mined and processed?

Can't they get it somewhere else?

• Are There Health Concerns?

Air quality
Water quality
Other issues

What Can We Do?

What Is Frac Sand?

Industrial silica sand is well-rounded, well sorted sand consisting of almost pure quartz, or silicon dioxide (SiO₂)
"Frac" sand is a type of industrial silica sand that meets specific requirements of the oil & gas industry

 Silica is one of the most common minerals on earth

Major component of rocks such as granite and gneiss

High compressive strength

Photo: Fedgazette, "Sand Surge", July 2012

Why Is Frac Sand Needed?

Private Well Typical deep, horizontal well Municipal Water Well: <1.000 ft. Uses 3-5 million lbs. of sand Shale Fractures Additional steel casings and cement to protect groundwater Protective Steel Casing Approximate distance (Not to scale) from surface: 6.000 feet SOURCE: http://www.netl.doe.gov/technologies/oil-gas/publications/brochures/Shale_Gas_March_2011.pdf

Minnesota Department of Natural Resources, 2012

This type of oil & gas exploration is NOT happening in Minnesota

Shale Gas Production is Driving Up Demand for Frac Sand

Actual Shale Gas Production – from EIA Weekly Update, 2007-2014

© Hughes GSR Inc, 2014

(data from EIA Weekly Update Report released April, 2014)

What's So Special About Frac Sand?

Construction Sand & Gravel

Industrial Silica Sand

Unlike typical sand and gravel, it is composed of ~ 95% quartz sand that must meet very strict specifications...

Frac Sand Must Meet Strict Specifications

GRAIN SIZE

0.15 - 0.6 millimeters

PRODUCT	8/12	10/20	20	/40	70	/140
Grain Size	2.38 to 1.68	2.00 to 0.84	0.84 t	o 0.42	210	to 105
(Diameter)	millimeter	millimeter	milli	neter	mi	crons
Sediment	Fine Gravel to	Very Coarse Sand to	Coarse	Sand to	Fine S	Sand to
	Coarse Sand	Coarse Sand	Mediu	m Sand	Very F	ne Sand

SHPERICITY AND ROUNDNESS

TURBIDITY

Product Sheets

Silt and clay sized particles (<62.5 microns) must not exceed a 250 turbidity threshold of 250 FTU (Formazin Turbidity Units). However, processing significantly removes silts and clays.

In other words – it's beach sand!

So Why Minnesota and Wisconsin?

Because 450 million years ago – this WAS the beach!

The Largest Deposits Are Here...

Minnesota Department of Natural Resources, 2012

...and they are easier to access than elsewhere in the country

Which Sandstones are of Interest?

Where Is The Silica Sand In MN?

Are There Alternatives?

Manufactured Proppants

- Ceramic beads made from:
 - Kaolinite
 - Bauxite
 - Recycled waste materials
 - glass, fly ash, mine tailings & slag
 - not yet commercially available

Issues

- Cost
- Transportation (most made outside US)
- Environmental impacts
- Availability

Mining Silica Sand

- Removal of overburden
- Excavation of loose sand
- Blasting and crushers used to loosen weakly cemented sandstone, but still keep individual round grains intact
- Some proposed mines will remove sandstone 50+ ft. below the water table

Fig. 6, Great Plains Sand EAW

Processing Frac Sand

- Sand is transported from the crusher to wash house
 - Often by conveyor belt
- Washing removes silt & clay
 - Often used in mine reclamation
 - Flocculant may be used to speed up drying → filter cake
- Sand dried and sorted by grain size
- Rinse water usually "recycled"
 - Settling ponds
 - Flocculants may be used
 - Water ultimately discharged or returned to mine

Photo: Brian Peterson, Star Tribune

Health Concerns Related to Silica Sand Mining

Air Quality Concerns

- Two forms of silica: crystalline & amorphous
- Respirable crystalline silica is the main concern
 - Especially 4 micron or smaller (PM4)
- Crystalline silica has long been recognized as a major occupational hazard, causing disability and deaths in workers in several industries

Respirable Silica Toxicity

PM4 crystalline silica settles deep in lungs

- Then passes to other organs in the body through the blood
- Crystalline silica exposure is associated with:
 - Silicosis

- Especially among smokers
- Lung cancer
- Chronic Obstructive Pulmonary Disease
- Renal disease/kidney disease
- Immune system diseases

- Disease risk is related to the level and duration of exposure
 - Non-linear response: risks are much more elevated at higher exposures
- Disease may occur long after the exposure ends

Silica Toxicity

Non-workers may also be at risk

- Ambient crystalline silica levels can be significantly elevated downwind of mine and quarry operations
- Silicosis has been reported in highly exposed individuals in non-occupational settings
- Anecdotal reports of asthma-like symptoms

OSHA – Permissible Exposure Limit (PEL)

- 100 µg/m³ PM4 for 8-hour time-weighted average
- Adjusted to 24 hour exposure: 24 µg/m³ PM4

NIOSH – Recommend Exposure Limit (REL)

- 50 µg/m³ PM4 for 8-hour time-weighted average
- Adjusted to 24 hour exposure: 15 µg/m³ PM4

500 micrograms of frac sand looks like:

Photo: Geoff Plumlee, USGS

500 micrograms

Silica Toxicity

- Minnesota
 - Chronic Health Based Value (HBV_{chronic}) = 3 μg/m³
 - Protective against silicosis (and therefore, lung cancer)
 - www.health.state.mn.us/divs/eh/risk/guidance/air/silicasumm.pdf

California EPA's OEHHA

Chronic reference exposure limit of 3 µg/m³ PM4

Little Known About Air Quality at Frac Sand Mines

- No standard monitoring method for PM4
 - Current methods use modified PM10 monitor
- Limited "real world" data (MN, WI, IA)
- Risk for people near mines not well understood yet
- Exposures can be controlled, but need standards

Air Quality Data - Minnesota

Shakopee Sands:

City of Winona:

Tiller – North Branch:

Source: MPCA website , 3/9/2015 -

www.pca.state.mn.us/index.php/air/air-quality-andpollutants/air-pollutants/silica-sand-mining/airmonitoring-data-at-minnesota-silica-sandfacilities.html

Water Quality Concerns

- All mines pose some potential risk to water quality
- Removal or reduction of cover above aquifers
 - Chemicals used within the mining area
 Fuel and other automotive liquids
 Explosives & mineral processing chemicals
 - **Contaminated runoff entering the mine**
 - Bacteria & viruses
 - Pesticides & nutrients
 - Other contaminants
- Illegal waste disposal in mine
 Improper reclamation & future land use
 www.health.state.mn.us/divs/eh/water/swp/mining.pdf

Water Issues Unique to Frac Sand Mines

- Frac sand areas are co-located with some of Minnesota's most vulnerable groundwater
- Jordan Sandstone mines may remove local/regional aquitards (shales) that protect the main drinking water aquifer for east-central Minnesota
- St. Peter Sandstone mines may remove cover over bedrock where karst exists or readily forms; when this happens...
- The backfilled mine remains as a depression in the surface of the bedrock that may:
 - focus infiltration
 - accelerate karst formation
 - create/enlarge contaminant pathways

Flocculants at Frac Sand Mines

Used at <u>some</u> mines to remove fines from rinse water during sand washing process

Held in lined basins & recirculated - reduces water consumption Water eventually returned to mine Fine sediment slurry (reclamation) Large volume at end of season Discharged directly back into drinking water aquifer (Jordan SS)

Main constituents – polymers

Polyacrylamide Poly-diallyldimethylammonium chloride (polyDADMAC)

Monomer residuals

Acrylamide (usually less than 0.05%)

Diallyldimethylammonium chloride (DADMAC; 1-5%)

Superior Sands, Bloomer Chippewa County 2012-06-15

Acrylamide – Health Concern

EPA classifies as a "likely carcinogen"

- Also a neurotoxin
- National Primary Drinking Water Regulation: 0.5 µg/L

Concentrations in rinse water:

- Belvidere, NJ (measured): 1.19 µg/L
- Chippewa Co., WI (estimate): 5.57 µg/L
- Shakopee Sands, Scott Co., MN (estimate): 1.3–9.1 µg/L
- Sand and gravel mine, MN (measured): 0.28 µg/L

May be present in some blasting agents:

Shakopee Sands, Scott Co., MN: 2.2 – 7.4 µg/L - ???

Acrylamide – Fate & Transport

• Mobility:

- Very soluble
- Poorly adsorbed to mineral or organic matter

Rainfall

Degradation:

Infile Readily degrades in soil and surface water

Degradation rates decrease <u>significantly</u> at lower temperatures (10° C) and in saturated soils¹
i.e. groundwater conditions
Polyacrylamide DOES NOT degrade to acrylamide in any appreciable amounts

¹ Abdelmagid and Tabataba (1982) Journal of Env. Qual., 11:701-704

MDH Activities

- Health Based Value (HBV): 0.2 µg/L
 - Based on cancer risk (i.e. long-term exposure)

Public Health Laboratory

- Developed analytical method in 2013
- Evaluated acrylamide degradation rates

Environmental Review

- Review EAWs and EISs for proposed mines
- Assist MPCA in permitting review process

Preliminary Water Quality Data

Shakopee Sands (frac sand mine)

- 2.2 7.4 µg/L in pit water (possibly from blasting agent?) 2012
- 0.15 0.17 µg/L in pit water 2014
- Not detected in groundwater monitoring wells

Sand and gravel mine

- 0.26 0.28 µg/L in pit water
 - Corresponds with MPCA permitted application rate estimates
- 0.047 µg/L in recirculating water
- Not detected (<0.017 µg/L) after 4 days in holding pond

Taconite mine

- 0.018 µg/L in nearby surface water
- <0.017 µg/L in mine pits</p>
- <0.017 0.033 µg/L in groundwater monitoring wells</p>

Preliminary Water Quality Data

- Drinking water treatment plants
 - 0.021 0.04 µg/L in process water
 - + 0.046 0.056 μ g/L in finished water

DADMACs: Health Concern

polyDADMAC & DADMAC

- Precursors to the formation of N-nitrosodimethylamine (NDMA) in the presence of some water disinfectants ^{2,3}
- NDMA:
 - EPA "reasonably anticipated human carcinogen"
 - On EPA's Unregulated Chemicals Monitoring Regulation List 2 and Contaminant Candidate List 3 (CCL3)
 - No federal or MN drinking water standards
 - IRIS: 10⁻⁵ cancer risk: 0.7 μg/L
 - California DPH response level: 0.3 µg/L

Concentrations in frac sand rinse water unknown

Scott Co., MN (est.): pDADMAC – mg/L?; DADMAC – "sub mg/L"

²Mitch & Sedlak (2004) ES&T, 38:1445-1454 ³Kemper (2009) PhD thesis, Yale

DADMACs – Fate & Transport

• Mobility:

- Very soluble
- pDADMAC readily adsorbed to soil and sediment
- DADMAC poorly adsorbed to mineral or organic matter

nfiltration

Degradation:

Both biodegrade under aerobic conditions
DADMAC half-life in aerobic soil reported 30 days
Neither degrades under anaerobic conditions

MDH Activities

- DADMAC and NDMA added to "Chemicals of Emerging Concern" list
 - Available information will be reviewed to determine if Health Based Values can be established

Public Health Laboratory

NDMA on priority list for method development

Environmental Review

- Review EAWs and EISs for proposed mines
- Assist MPCA in permitting review process
- Currently controlling through filter cake management

Other Water Quality Issues?

Oxidation of groundwater

Convert ammonia to nitrate

Change pH of groundwater?

Mobilize metals in aquifer

Other Health Issues?

- Truck traffic 24/7
 - Dust
 - Noise
 - Risk of accidents
 - Engine exhaust
 - Diesel particulates

- Acrylamide & DADMAC in air?
 - Does drying of sands or filter cake processed with flocculants release acrylamide and/or DADMAC?
 - Seems unlikely but no data available

An Ounce of Prevention....

Planning

- Identify, evaluate and address risks before digging
- Minimize activities in vulnerable areas
- Require appropriate flocculant addition rates
- Establish air and water monitoring networks

Management

- Engineer site & process to control runoff and dust
- Proper handling, storage, & disposal of chemicals
- Monitor water and air quality
- Confirm acrylamide degradation

Reclamation

- Divert surface drainage from former mine area
- Re-vegetate with native plants to minimize or eliminate need for fertilizers and pesticides

Rules &

Regulations

MN 2013 Legislative Action

State agencies directed to develop:

- Particulate emissions control rules (MPCA)
- Mine reclamation rules (DNR)
- Respirable silica sand health-based value (MDH)
- Mines within 1 mile of a trout stream require:
 - In-depth hydrological study
 - DNR permit

 State "technical assistance team" established to aid local governments with:

- Ordinance development and zoning
- Environmental review and permitting
- Monitoring

What Is Needed?

- Air quality
 - PM4 standard monitoring methodology
 - Air monitoring data from areas near silica sand mines
 - More information about flocculants in air from drying sands

Water quality

- Standard analytical methods and drinking water criteria for DADMAC and NDMA
- More monitoring data from groundwater and holding ponds at frac sand mines and processing facilities

Acknowledgements

- Heather Arends, MN Dept. of Natural Resources
- Theresa Haugen, MN Pollution Control Agency
- Hillary Carpenter, formerly MN Dept. of Health
- Kate Sedlacek, Scott Co. Environmental Health
- Wisconsin Dept. of Natural Resources

Questions?